CMPT 476/981: Introduction to Quantum Algorithms Assignment 3

Due February 15th, 2024 at 11:59pm on coursys Complete individually and submit in PDF format.

Question 1 [4 points]: Projectors

Let $|\psi\rangle$ be a unit vector in \mathbb{C}^d and $|\psi^{\perp}\rangle$ be a unit vector which is orthogonal to $|\psi\rangle$.

- 1. Let $P = |\psi\rangle\langle\psi|$. Compute $(I 2P)|\psi\rangle$ and $(I 2P)|\psi^{\perp}\rangle$.
- 2. Show that $(I 2|\psi\rangle\langle\psi|)$ is unitary whenever $|\psi\rangle$ is a unit vector.
- 3. Suppose a single qubit has state $|\psi\rangle \in \mathbb{R}^2$ that is, $|\psi\rangle$ is a unit vector in \mathbb{R}^2 where $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ can be viewed as the unit vector along the positive x-axis, and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ the unit vector along the positive y axis. This is the two-dimensional picture of a quantum state which we've used in class:

What is the geometric interpretation of the transformation $I-2|0\rangle\langle 0|$ in \mathbb{R}^2 ?

4. Does the transformation $I - 2|0\rangle\langle 0|$ have a similar geometric interpretation in the Bloch sphere? Why or why not?

Question 2 [3 points]: Parity measurement

- 1. How is a parity measurement of two qubits different from measuring both bits in the computational basis and then taking their parity?
- 2. Devise a circuit using CNOT gates and computational basis measurement which measures the parity of two qubits without measuring either qubit itself.

Hint: you will need to use an ancilla — i.e. an additional qubit initialized to $|0\rangle$:

Question 3 [1 points]: Mixed states

Calculate the density matrix of the following ensembles.

- 1. $\{(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|+\rangle, 1)\}$
- 2. $\{(|0\rangle, \frac{1}{2}), (|+\rangle, \frac{1}{2})\}$
- 3. $\{(|00\rangle, \frac{1}{2}), (|01\rangle, \frac{1}{4}), (|10\rangle, \frac{1}{4})\}$

Question 4 [1 point]: Partial trace

Calculate the following reduced density matrix, taking A to be the first qubit (i.e. trace out the first qubit):

$$\operatorname{Tr}_{A} \left(\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \right)$$

Question 5 [3 points]: Positivity of the density operator

An operator A is positive-semidefinite if $\langle v|A|v\rangle$ is real and non-negative for any vector $|v\rangle$ of appropriate dimension. That is, A is positive-semidefinite if and only if $\langle v|A|v\rangle \in \mathbb{R}^+$ where \mathbb{R}^+ are the non-negative real numbers for all vectors $|v\rangle$.

Show that the density matrix $\rho = \sum_i p_i |\phi_i\rangle\langle\phi_i|$ of an ensemble of pure states $\{(|\phi_i\rangle, p_i)\}$ is a positive-semidefinite operator.

Question 6 [4 points]: No-communication

Suppose Alice and Bob share some mixed state ρ on a bipartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$. Recall that the partial measurement of Alice's qubit in basis $\{|e_i\rangle\}$ corresponds to the projective measurement $\{P_i = |e_i\rangle\langle e_i| \otimes I\}$ which maps $\rho \mapsto \sum_i P_i \rho P_i$.

Show that Bob's reduced density matrix is not affected by Alice measuring her qubit in any basis $\{|e_i\rangle\}$ of \mathcal{H}_A . Note: It may be helpful to assume that \mathcal{H}_B has a basis $\{|f_j\rangle\}$.

Question 7 [6 points]: Teleportation-based protocols

Suppose Alice has a qubit $|\psi\rangle$ and Bob has a qubit $|\phi\rangle$, and consider the following scenario:

- Alice and Bob have a classical communication channel
- Alice and Bob have shared access to an unlimited source of entangled qubits
- Alice and Bob do **not** have a quantum communication channel
- 1. Describe a procedure by which Alice and Bob could apply a CNOT gate to their pair of qubits i.e. $CNOT(|\psi\rangle\otimes|\phi\rangle)$
- 2. Find values $a, b, c, d \in \{0, 1\}$ as functions of w, x, y, z such that

You may find the following circuit equalities useful for this question:

3. Explain why the following circuit would implement a CNOT gate on the state $|\psi\rangle|\phi\rangle$

4. Let

$$|\Delta\rangle = (I \otimes CNOT \otimes I)(|\beta_{00}\rangle \otimes |\beta_{00}\rangle) = \frac{1}{2}\left(|0000\rangle + |0011\rangle + |1110\rangle + |1101\rangle\right)$$

be a 4 qubit entangled state. Suppose Alice has the first two qubits of $|\Delta\rangle$ and Bob has the second two. Explain why the circuit below where a, b, c, d are the functions of w, x, y, z

you gave in part 3 implements a remote CNOT between their qubits — that is, applies $CNOT(|\psi\rangle\otimes|\phi\rangle)$ without Alice or Bob physically teleporting their qubits to one another.

